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Background: The time-dependent Hartree-Fock (TDHF) theory has been successful in describ-
ing low-energy heavy ion reactions. Recently, we have shown that multinucleon transfer (MNT)
processes can be reasonably described in the TDHF theory combined with the particle-number pro-
jection technique.

Purpose: After the MNT reaction, various kinds of nuclei are produced. We theoretically investi-
gate structural properties of those nuclei to elucidate underlying microscopic reaction mechanisms.

Methods: In this project, we investigate low-lying energy spectra of nuclei having valence nucleons
in the 1f7/2 orbit on top of the N (Z) = 20 inert core. To calculate energy spectra, we use three
models, the shell-model, the theory of coefficients of fractional parentage (c.f.p.), and the TDHF
theory combined with a quantum-number projection (QNP) technique (TDHF+QNP). We evaluate
two-body matrix elements for nuclei in the 20 ≤ N (Z) ≤ 28 region employing an interpolation
technique. For three and four particle (hole) states in a single-j orbit, we will also use a well-known
theory of c.f.p. which analytically gives us expressions of energy spectra relative to the ground state.
We will separately develop a theoretical framework of the TDHF theory to obtain energy spectra of
reaction products specified by the total spin and parity, Jπ, by extending the QNP technique.

Results: We obtain two-body particle-particle (hole-hole) and particle-hole matrix elements for
all nuclei in the 20 ≤ N (Z) ≤ 28 region by the interpolation technique. We perform shell-model
calculations for those nuclei using the evaluated two-body matrix elements. Comparing energy
spectra of the shell-model calculation and those of measurements, we find a fairly good agreement
between them.

Perspectives: The method we have developed in this project would be useful to evaluate two-
body matrix elements for many nuclei in a wide mass region. As a next step, we will develop the
other approaches, the theory of c.f.p. and the TDHF+QNP, which have not been investigated yet.
Combining these three approaches, we hope to develop our understands of both static and dynamical
properties of atomic nuclei.

I. INTRODUCTION

Nuclear reaction experiment utilizing a large heavy-
ion accelerator is indispensable to study properties of
atomic nuclei. We can explore structural properties of
nuclei from outcome of the reaction: various kinds of
cross sections and its incident energy dependence, angu-
lar distributions, momentum distributions, energy losses,
deexcitation properties of reaction products, and so on.
Since reaction dynamics and nuclear structure are mutu-
ally related, to develop both nuclear structure and reac-
tion theories is naturally requisite for developing our true
understanding of atomic nuclei.
Thanks to the ongoing development of experimen-

tal apparatus, nowadays, detail studies of multinucleon
transfer (MNT) processes have been becoming feasible
[1]. Precise measurements of differential cross sections
as well as energy and angle integrated cross sections for
each transfer channel have been performed [2–5]. More-
over, decay spectroscopic studies of reaction products
generated through the MNT reaction have recently been
achieved by γ-particle coincidence technique [6].
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To understand the microscopic reaction mechanisms of
the MNT reaction, we have studied MNT processes em-
ploying the time-dependent Hartree-Fock (TDHF) theory
[7–10]. As a first attempt, we studied MNT processes in
low-energy heavy ion reactions at around the Coulomb
barrier for several systems for which measured cross sec-
tions have been available [7]. From the thorough analysis
reported in Ref. [7], we have concluded that MNT cross
sections can be quantitatively described by the micro-
scopic TDHF theory combined with the particle-number
projection (PNP) technique [11].

Recently, we have developed a theoretical framework to
calculate expectation values of operators in the TDHF
wave function after collision with the PNP [9]. This
method enables us to investigate properties of reaction
products generated though the MNT reaction within the
microscopic framework of the TDHF theory. However,
because we have included only the PNP in our theoret-
ical framework, obtainable expectation values are aver-
aged over all possible quantum states populated by the
reaction. To get deeper insight into reaction mechanisms
as well as structure of reaction products, it is desirable
to extend our framework to include party and angular
momentum projections [12]. It is then possible to ana-
lyze excited states of reaction products specified by the
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total spin and parity, Jπ. We shall refer this approach,
the TDHF theory combined with the quantum-number
projection (QNP) technique, as “TDHF+QNP” in this
project.
Based on the above, the aim of this project has be-

come to develop theoretical models which can be applied
to a number of nuclei in the wide mass region, to inves-
tigate properties of reaction products generated through
MNT processes. In this project, we are planing to use
three models, (i) the shell-model, (ii) the theory of co-
efficients of fractional parentage (c.f.p.) [19], and (iii)
the TDHF+QNP. Specific meaning to use them are the
followings:

(i): As is well-known, the nuclear shell-model has been
successful to describe various properties of atomic
nuclei (e.g. magic numbers, single-particle ener-
gies, ground state spin-parity, low-lying excitation
spectra, and so on). Thus, energy spectra evalu-
ated by using the shell-model would be a good ref-
erence results to examine whether the shell-model
picture, which assumes independent particles in a
one-body mean-field potential, and its assumption
on the model-space are valid or not. Therefore, in
this project, we develop a method to evaluate two-
body matrix elements, which are necessary for the
shell-model calculation, to calculate energy spectra
of many nuclei.

(ii): When we consider low-lying states of a nucleus
which has a core plus valence nucleons in a single-j
orbit, the theory of c.f.p. provides a elegant pre-
scription to describe excited states as a simple cou-
pling scheme of the valence nucleons [19]. It would
be an indicator that tells us whether those excited
states can be constructed from the simple coupling
scheme or not. We will thus compare energy spec-
tra evaluated by other methods with the predictions
of c.f.p.

Actually, in the above two approaches, we consider just a
static structural properties. We then need the third ap-
proach to examine dynamical aspects and reaction mech-
anisms:

(iii): Apart from (i) and (ii), we calculate heavy ion re-
actions using the TDHF theory to obtain the many-
body wave function after collision. Achieving an
extension of our formalism to include the parity
and angular momentum projections, we would get
energy spectra from the TDHF wave function af-
ter collision. The energy spectra obtained from the
TDHF+QNPmay include not only structural prop-
erties of reaction products at a certain time t = tf
after the collision but also dynamical properties of
the reaction process.

From comparisons between these three approaches, we
may get information of structural properties of reaction
products whether it can be explained by the naive shell-
model and/or c.f.p.’s considerations. This is the main
interest which urged me to do this project.

This project report is organized as follows. In Sec. II,
we present gross properties of nuclei in the target region,
20 ≤ N (Z) ≤ 28, which are useful to proceed our consid-
eration. In Sec. III, we explain our methods to evaluate
structural properties of those objective nuclei. In Sec. IV,
a summary and a perspective are presented.

II. GROSS STRUCTURAL PROPERTIES

For simplicity, in this project, we concentrate on nu-
clei with valence nucleons in the 1f7/2 orbit. We assume
that N and Z = 20 cores are inert. Before explaining
our approaches to investigate low-lying energy spectra of
those nuclei, we show gross properties of objective nuclei
which would be useful to proceed our consideration.

A. Half-life

In Fig. 1, we show a part of nuclear chart which shows
all nuclei in the objective region, 20 ≤ N (Z) ≤ 28. Each
box corresponds to each nucleus. The box color repre-
sents the half-life, T1/2, of corresponding nucleus. Stable

nuclei with T1/2 > 1015 s are represented by black boxes.
Blue, cyan, and dark-green boxes represent nuclei with
half-lives T1/2 ∼ 1010 s, 105−7 s, and 104 s, respectively.
Light-green boxes located in N ≤ Z region represent nu-
clei with half-lives T1/2 ≲ 10−1 s. As seen from the figure,
proton-rich nuclei in this region have rather short half-
lives. We indeed find that energy spectra of those proton-
rich nuclei are still not well-known. We will thus compare

FIG. 1. (Color online) A part of nuclear chart which shows
objective nuclei in this project. Box color indicates the half-
life of each nucleus (for more detail see text). The chart has
been taken from Ref. [13]. Red square boxes indicate key
nuclei whose two-body matrix elements are determined from
available experimental data. These matrix elements are used
in the interpolation procedure (see text).
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FIG. 2. (Color online) R4/2 ratio (a) and excitation energy

of first 2+ state (b) are shown for even-even nuclei in the
20 ≤ N (Z) ≤ 28 region as functions of the neutron number.

calculated energy spectra with those of measurements for
nuclei in N ≥ Z region.

B. R4/2 and E(2+1 )

It is well-known that the ratio of excitation energy
of first 4+ state to that of first 2+ state, R4/2 ≡
E(4+1 )/E(2+1 ), would be a measure of collectivity and
shape evolution. Nuclei having vibrational nature, which
exhibit quadrupole-phonon excitation modes at low ex-
citation energy, give R4/2 ∼ 2. While nuclei having ro-
tational nature (well deformed nuclei which has a sharp
minimum of the potential energy surface on the β-γ plane
showing J(J +1) rotational band) give R4/2 ∼ 3.33. Let
us take a look at experimental data of the R4/2 ratio

and the value of E(2+1 ) for even-even nuclei reported in
Ref. [13].
In Fig. 2, we show the R4/2 ratio in panel (a) and

the value of E(2+1 ) in panel (b) as functions of the neu-
tron number, N . Red open circles, green open triangles,
blue crosses, pink squares, and cyan stars connected with
lines show results of 20Ca-, 22Ti-, 24Cr-, 26Fe-, and 28Ni-
isotopes, respectively.
From the figure, we find that rather small values of

R4/2 ratio for all nuclei except for 52
26Fe26 which has

R4/2 ∼ 2.8 (but still lower than 2.9, a critical value
for shape transition). Especially, for nuclei with the
magic number N = 20, 28 and/or Z = 20, 28, we find
that the R4/2 ratio takes values smaller than two, in-

dicating a substantial shell effect which suppresses exci-
tations of quadrupole phonons. From these values, we
expect a small deformation for nuclei in this region and
a good description by spherical shell-model calculations
for them. We note that the ground-state spin-parity of
nuclei having N = 21, 23, 25, 27 and Z = 20 and having
Z = 21, 23, 25, 27 and N = 20 are always Jπ = 7/2−.
This fact would also suggest a persistence of spherical
shell-model picture for those nuclei.

C. Energies of low-lying excited states

From the above consideration, we find possible indica-
tions that we may reasonably assume the spherical shell-
model configuration for nuclei in the 20 ≤ N (Z) ≤ 28
region. We thus apply the m-scheme to investigate low-
lying energy spectra of nuclei having 2-particle (2p), 2-
hole (2h), and 1-particle 1-hole (1p1h) configurations, in
the 1f7/2 orbit. For two identical particles (holes), the
m-scheme predicts states with total angular momentum
λ = 0, 2, 4, and 6. For a neutron and a proton particles
(holes), the m-scheme predicts states with total angular
momentum λ = 0, 1, · · · , 7, because of the lack of the
Pauli exclusion principle.

In Table I, we show measured low-lying excitation ener-
gies specified by Jπ = 0+, 1+, · · · , 7+ for nuclei with 2p,
2h, and 1p1h configurations. As we expected from them-
scheme, we indeed find those states at low excitation en-
ergies in experimental spectra. Since 50

28Ni22,
46
26Ni20, and

48
27Ni21, are extremely proton-rich and they are almost on
the proton drip-line, energy spectra of those nuclei have
not been measured experimentally. Such unknown states
are represented by hyphens, “−”, in Table I.

For 42
21Sc21 and 54

27Co27 nuclei, there are several states
whose spin-parity, Jπ, has not been identified experimen-
tally. If there are several candidate states for a single
spin-parity, we have arbitrary selected one state from
among those candidates. Their energies are represented
with parenthesis in the table. We have selected the 5+

state of 42
21Sc21 as a state at E∗ ∼ 1.5 MeV, because it has

a similar energy to the energy of the 5+ state in 54
27Co27.

Similarly, we have selected the 6+ states of 42
21Sc21 and

54
27Co27 as states at E∗ ∼ 3.2 MeV and E∗ ∼ 2.9 MeV,
because 6+ states of all nuclei with 2p or 2h configura-
tion emerge at around 3 MeV (see columns 2-5, 7, and
9). The 7+ state of 42

21Sc21 is selected because it is the
candidate with lowest energy and other candidates have
much higher energy, more than 3 MeV.

From the table, we find that excitation energies of 2+,
4+, and 6+ states are very similar to each other indepen-
dent from whether two states are particle-states or hole-
states and from their isospins. It may indicate an exis-
tence of particle-hole symmetry as well as isospin symme-
try in residual interactions acting on valence nucleons in
the 1f7/2 orbit. In the next Section, we will use this fact
to evaluate two-body matrix elements for all nuclei in the
20 ≤ N (Z) ≤ 28 region by an interpolation technique.
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TABLE I. Measured low-lying excitation energies for nuclei with core+two-particle (2p), core+two-hole (2h), or core+one-
particle-one-hole (1p1h) configurations in the 20 ≤ N (Z) ≤ 28 region are shown. Experimental data have been taken from
Ref. [13]. Energies with parenthesis mean that its spin-parity Jπ has not been identified yet (see text for more detail). States
which have not been measured are represented by hyphens, “−”.

E∗
exp(N,Z; Jπ) (MeV)

42
20Ca22

46
20Ca26

42
22Ti20

50
22Ti28

50
28Ni22

54
28Ni26

46
26Fe20

54
26Fe28

42
21Sc21

54
27Co27

48
21Sc27

48
27Co21

Jπ (2pν) (2hν) (2pπ) (2pπ) (2pν) (2hν) (2hπ) (2hπ) (1pπ1pν) (1hπ1hν) (1pπ1hν) (1hπ1pν)

7+ (0.616) 0.197 1.096 −
6+ 3.189 2.974 3.043 3.199 − 3.071 − 2.949 (3.242) (2.912) 0.000 −
5+ (1.510) 1.887 0.131 −
4+ 2.752 2.575 2.677 2.675 − 2.620 − 2.538 2.815 2.652 0.252 −
3+ 1.490 1.822 0.623 −
2+ 1.525 1.346 1.556 1.554 − 1.392 − 1.408 1.586 1.446 1.143 −
1+ 0.611 0.937 2.517† −
0+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.678 −

†Although there has also been measured a Jπ = 1+ state at E∗ ∼ 2.2 MeV, we have taken the Jπ = 1+ state at E∗ ∼ 2.5 MeV as a

member of particle-hole multiplet, because the latter is much more populated than the former in various reactions, e.g. 48Ca(p, n),
48Ca(3He, t), and 48Ti(t,3He) reactions [14].

III. METHODS AND RESULTS

A. Evaluation of two-body matrix elements

We define a shell-model interaction for the 1f7/2 orbit
which can be applied to nuclei in the 20 ≤ N (Z) ≤ 28
region. We first determine two-body interaction matrix
elements for 42

21Sc21,
54
27Co27, and 48

21Sc27 from available
experimental spectra. We will then construct two-body
matrix elements for other nuclei employing an interpola-
tion technique.

1. Determination from experimental spectra

We can directly determine particle-particle, hole-hole,

and particle-hole matrix elements, vppλ , vhhλ , and vphλ , re-
spectively, using available experimental data of low-lying
energy spectra shown in Table I and nuclear binding en-
ergies of neighboring nuclei, as follows.
As shown in Table I, we found low-lying states which

can be considered as a particle-particle (hole-hole, or
particle-hole) multiplet in the experimental spectra. Be-
cause of our assumption that there exist N = 20 or 28
and/or Z = 20 or 28 inert core, we can regard excitation
energies of those states as relative values of two-body ma-
trix elements of the residual interaction for the valence
nucleons.
The absolute value of the matrix elements for the

ground state can be determined from the binding ener-
gies of the neighboring nuclei. Let us first consider the
case of particle-particle matrix elements. By taking a dif-
ference between nuclear binding energies, we may obtain

a relation, B
[
42
21Sc21

]
− B

[
40
20Ca20

]
≈ −vpp0 − V p

ν − V p
π ,

where B denotes the nuclear binding energy of the speci-
fied nucleus in the square brackets. The −V p

τ denotes an
interaction energy between a particle-state with isospin
τ and the other nucleons. In the same way, we may ob-
tain B

[
41
21Sc20

]
− B

[
40
20Ca20

]
≈ −V p

π and B
[
41
20Ca21

]
−

B
[
40
20Ca20

]
≈ −V p

ν . By combining these three relations,
we may determine the absolute value of the ground state
matrix element vpp0 by

vpp0 = −B
[
40
20Ca20

]
−B

[
42
21Sc21

]
+B

[
41
21Sc20

]
+B

[
41
20Ca21

]
= −342.034− 354.667 + 343.117 + 350.397

= −3.187 (MeV). (1)

We have evaluated the nuclear binding energy from
atomic binding energies reported in AME2003, the
atomic mass evaluation [16], correcting the electrons’
binding energy according to Eqs. (A2) and (A4) in
Ref. [17]. After the determination of the absolute value
of vpp0 , we evaluate other matrix elements relative to the
vpp0 by vppλ̸=0 = vpp0 + E∗

exp(λ). The resulting particle-
particle matrix elements for the 1f7/2 orbit deduced from

the experimental energy spectrum of 42
21Sc21 are shown in

column 2 of Table II.

In a similar manner, we determine absolute values of
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TABLE II. Particle-particle matrix elements vppλ in the 1f7/2
orbit deduced from the energy spectrum of 42

21Sc21. Particle-
hole interaction matrix elements vphλ , which are evaluated
from the vppλ through the Pandya transformation Eq. (4), are
also shown.

Sc42

(λ, T ) vppλ (MeV) (λ, T ) vphλ (MeV)

(6, 1) 0.055 (0, 1) -13.835

(4, 1) -0.372 (1, 0) -18.478

(2, 1) -1.601 (7, 0) -19.685

(5, 0) -1.677 (3, 0) -20.475

(3, 0) -1.697 (2, 1) -20.546

(7, 0) -2.571 (4, 1) -20.753

(1, 0) -2.576 (5, 0) -20.785

(0, 1) -3.187 (6, 1) -20.873

hole-hole and particle-hole matrix elements by

vhh0 = −B
[
56
28Ni28

]
−B

[
54
27Co27

]
+B

[
55
27Co28

]
+B

[
55
28Ni27

]
= −483.951− 462.700 + 476.789 + 467.311

= −2.550 (MeV), (2)

vph6 = −B
[
48
20Ca28

]
−B

[
48
21Sc27

]
+B

[
49
21Sc28

]
+B

[
47
20Ca27

]
= −415.972− 415.469 + 425.597 + 406.027

= 0.182 (MeV). (3)

We note that total angular momentum λ of the ground
state of 48

21Sc27 is six as shown in column 12 of Table I.
The resulting hole-hole and particle-hole matrix elements
are shown in column 2 of Table III and IV, respectively.

TABLE III. Same as Table I but for hole-hole matrix elements
vhhλ deduced from the energy spectrum of 54

27Co27. Particle-
hole matrix elements vphλ , which are evaluated from the vhhλ
through the Pandya transformation Eq. (4), are also shown.

Co54

(λ, T ) vhhλ (MeV) (λ, T ) vphλ (MeV)

(6, 1) 0.594 (0, 1) -2.456

(4, 1) 0.381 (1, 0) -5.257

(5, 1) -0.663 (7, 1) -7.464

(3, 0) -0.728 (2, 0) -7.490

(2, 0) -1.104 (3, 1) -7.811

(1, 0) -1.613 (4, 0) -8.327

(7, 0) -2.353 (5, 1) -8.517

(0, 1) -2.550 (6, 0) -8.609

TABLE IV. Same as Table II and III but for particle-hole
matrix elements vphλ deduced from the energy spectrum of
48
21Sc27. Particle-particle matrix elements vppλ , which are eval-

uated from the vphλ through the inverted Pandya transforma-
tion Eq. (6), are also shown.

Sc48

(λ, T ) vphλ (MeV) (λ, T ) vppλ (MeV)

(0, 3) 6.860 (6, 1) 0.594

(1, 3) 2.699 (4, 1) 0.381

(2, 3) 1.325 (2, 1) -0.496

(7, 3) 1.278 (5, 0) -0.549

(3, 3) 0.805 (3, 0) -0.729

(4, 3) 0.434 (1, 0) -1.800

(5, 3) 0.313 (0, 1) -1.807

(6, 4) 0.182 (7, 0) -1.956

2. Pandya transformation

Up to now, we have determined particle-particle ma-
trix elements vppλ for 42

21Sc21, hole-hole matrix elements

vhhλ for 54
27Co27, and particle-hole matrix elements vphλ for

48
21Sc27, from available experimental data. There is a use-

ful transformation which enables us to connect vphλ and

vppλ (or vhhλ ) (and vice versa), the Pandya transformation
[18].
The Pandya transformation is given by

vphλ = E0 −
∑
λ′

(2λ′ + 1)

{
j j λ

j j λ′

}
vppλ′ , (4)

where the curly brackets in Eq. (4) represent the Wigner’s
6j-symbol [19]. E0 denotes a λ-independent interaction
energy,

E0 =
1

2j + 1

∑
all λ′

(2λ′+1)vppλ′ +
2j − 1

2j + 1

∑
even λ′

(2λ′+1)vppλ′ ,

(5)
which takes a value of E0 = −21.685 MeV for vppλ de-

duced from 42Sc and E0 = −8.716 MeV for vhhλ deduced
from 54Co. In column 4 of Table I and II, we show
particle-hole matrix elements evaluated from vppλ and vhhλ
through the Pandya transformation Eq.(4), respectively.
We can derive an inverted version of the Pandya trans-

formation [15]. The inverted Pandya transformation is
given by

vppλ = E0 −
∑
λ′

(2λ′ + 1)

{
j j λ

j j λ′

}
vphλ′ , (6)

where E0 denotes the same λ-independent interaction en-
ergy as Eq.(5) but now which is expressed by means of

particle-hole matrix elements vphλ ,

E0 =
1

2j(2j + 1)

∑
λ′

(2λ′ + 1)vphλ′ − 2j − 1

2j(2j + 1)
vph0 . (7)
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For vphλ deduced from the experimental spectrum of
48
21Sc27, it is found to be E0 = 0.267 MeV. In column 4
of Table IV, we show particle-particle matrix elements

evaluated from vphλ through the inverted Pandya trans-
formation Eq. (6).

3. Interpolation technique

As we saw in Table I, the particle-particle matrix ele-
ments (columns 2, 4, and 5) have very similar values to
those of the hole-hole matrix elements (columns 3 and
7) and they are not so much dependent on the isospin
degrees of freedom. This fact may indicate presence of
the particle-hole symmetry as well as the isospin symme-
try in the two-body matrix elements between particle(s)
and/or hole(s) in the 1f7/2 orbit.
Assuming the particle-hole symmetry, we obtain hole-

particle matrix elements, vhpλ , for 48
27Co21, from the eval-

uated vphλ for 48
21Sc27. We also obtain particle-particle

matrix elements, vppλ , for 54
27Co27, from the evaluated vhhλ

for 54
27Co27. These four matrix elements are located at

the four corners of the square region 21 ≤ N (Z) ≤ 27. It
means that if we interpolate the matrix elements between
these four, we may obtain all two-body matrix elements
available for the 21 ≤ N (Z) ≤ 27 region.
We thus interpolate these matrix elements employing

a simple linear interpolation technique. Here, for conve-
nience, let us introduce a notation for two-body matrix

elements, vppλ (N,Z) and vphλ (N,Z), where (N,Z) denotes
a set of neutron and proton numbers to which these ma-
trix elements can be applied. We first interpolate two
matrix elements between vppλ (21, 21) and vppλ (27, 21) by

vppλ (N, 21) = vppλ (21, 21)

+
(
N − 21

) vppλ (27, 21)− vppλ (21, 21)

6
, (8)

which provides particle-particle matrix elements for
43−47Sc. In the same way, we interpolate particle-particle
matrix elements vppλ (27, 21) and vppλ (27, 27) by

vppλ (27, Z) = vppλ (27, 21)

+
(
Z − 21

) vppλ (27, 27)− vppλ (27, 21)

6
, (9)

which provides particle-particle matrix elements for N =
27 isotones having proton number 22 ≤ Z ≤ 26. We also
interpolate between vppλ (21, 21) and vppλ (27, 27) by

vppλ (N,Z = N) = vppλ (21, 21)

+
(
N − 21

) vppλ (27, 27)− vppλ (21, 21)

6
, (10)

which provides particle-particle matrix elements for N =
Z nuclei. Finally, we achieve interpolations for isotones
with 22 ≤ N ≤ 26 using matrix elements evaluated by
Eqs. (8) and (10) as

vppλ (N,Z) = vppλ (N, 21)

+
(
Z − 21

) vppλ (N,Z = N)− vppλ (N, 21)

N − 21
.(11)

These interpolations Eqs. (8-11) enables us to fill the
lower triangle region, Z ≤ N part of the 21 ≤ N (Z) ≤ 27
region. Because of the particle-hole symmetry, they are
equivalent to the matrix elements in the upper triangle
region, Z ≥ N part of the 21 ≤ N (Z) ≤ 27 region.
To evaluate two-body matrix elements for Z = 21 and
28 isotopes and N = 20 and 28 isotones, we separately
achieve similar interpolations of the matrix elements for
Z = 20, 28 isotopes and N = 20, 28 isotones.
In this way, we have constructed two-body matrix el-

ements, vppλ (= vhhλ ) and vphλ (= vhpλ ), for all nuclei in the
20 ≤ N (Z) ≤ 28 region except for 12 nuclei with 0p0h,
1p0h, and 0p1h configurations.

B. Shell-model calculations

Using the two-body matrix elements evaluated in the
previous Subsection, we perform shell-model calculations
using the ArbModel [20].

1. Hamiltonian

Before showing results of the shell-model calculations,
we present some details of the calculations. We de-
note the creation and annihilation operators for a proton
particle-state (or a neutron particle-state) in the 1f7/2
orbit as âp†τ and âpτ , respectively, where τ = π for pro-
tons and τ = ν for neutrons. Those for hole-states are
denoted as âh†τ and âhτ . We use a standard notation of

tensor couplings: a coupling of two operators Â and B̂ to
a tensor having angular momentum J with its projection

MJ is expressed as
[
Â× B̂

](J)
MJ

.

The Hamiltonian of the system is given as a sum of
several parts:

(i) Interactions between proton particle-states,∑
ijkl

∑
λ

vppλ (N,Z)
[[
âp†i,π × âp†j,π

](λ) × [
âpk,π × âpl,π

](λ)](0)
0

,

or interactions between proton hole-states,∑
ijkl

∑
λ

vhhλ (N,Z)
[[
âh†i,π × âh†j,π

](λ) × [
âhk,π × âhl,π

](λ)](0)
0

,

which are switched on when the number of proton
particle-states (or hole-states) is greater than one.

(ii) Interactions between neutron particle-states,∑
ijkl

∑
λ

vppλ (N,Z)
[[
âp†i,ν × âp†j,ν

](λ) × [
âpk,ν × âpl,ν

](λ)](0)
0

,

or interactions between neutron hole-states,∑
ijkl

∑
λ

vhhλ (N,Z)
[[
âh†i,ν × âh†j,ν

](λ) × [
âhk,ν × âhl,ν

](λ)](0)
0

,
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which are switched on when the number of neutron
particle-states (or hole-states) is greater than one.

(iii) Interactions between proton particle-states and neu-
tron particle-states,∑
ijkl

∑
λ

vppλ (N,Z)
[[
âp†i,π × âp†j,ν

](λ) × [
âpk,π × âpl,ν

](λ)](0)
0

,

or interactions between proton hole-states and neutron
hole-states,∑
ijkl

∑
λ

vhhλ (N,Z)
[[
âh†i,π × âh†j,ν

](λ) × [
âhk,π × âhl,ν

](λ)](0)
0

,

which are switched on when both numbers of pro-
ton particle-states (or hole-states) and neutron particle-
states (or hole-states) have non-zero values.

(iv) Interactions between proton particle-states and neu-
tron hole-states,∑
ijkl

∑
λ

vphλ (N,Z)
[[
âp†i,π × âh†j,ν

](λ) × [
âpk,π × âhl,ν

](λ)](0)
0

,

or interactions between neutron particle-states and pro-
ton hole-states,∑
ijkl

∑
λ

vphλ (N,Z)
[[
âp†i,ν × âh†j,π

](λ) × [
âpk,ν × âhl,π

](λ)](0)
0

,

which are switched on when both numbers of proton
particle-states (or hole-states) and neutron hole-states
(or particle-states) have non-zero values.

We note that proton particle-states and proton hole-
states (or neutron particle-states and neutron hole-
states) do not coexist by definition. We include necessary
interactions into the Hamiltonian with proper two-body
matrix elements evaluated in Sec. III A concerning the
number of particles and holes in the 1f7/2 orbit [21].

2. Illustrative example: Scandium isotopes

Using the interpolation technique explained in
Sec. III A, we have evaluated two-body matrix elements
for nuclei in the 20 ≤ N (Z) ≤ 28 region. We then calcu-
late energy spectra of all those nuclei using the numerical
code, ArbModel. Here, we just show results of scandium
isotopes as an illustrative example, instead of showing all
the results for 52 nuclei (8× 8 = 64 nuclei except for 12
nuclei with 0p0h, 1p0h, and 0p1h configurations), since it
would be good enough to demonstrate usefulness of our
method.
Two-body matrix elements for scandium isotopes have

been evaluated by a horizontal interpolation along the
Z = 21 line by Eq. (8). In practical calculations, we ap-
ply particle-particle matrix elements vppλ for 42−45

21 Sc21−24

which have one-proton-particle and one- to four-neutron-
particle states in terms of the Z and N = 20 cores.

While we apply particle-hole matrix elements vphλ for
46−48
21 Sc25−27 which have one-proton-particle and one- to
three-neutron-hole states in terms of the Z = 20 and
N = 28 cores. Thus, this comparison would be a good
validity check of the interpolation method with the (in-
verted) Pandya transformation. We note that, because
of the particle-hole symmetry in the two-body matrix el-
ements, resulting spectra of scandium isotopes (Z = 21)
are equivalent to those of N = 21 isotones.
We concentrate only on states associated with cou-

plings of particle(s) and/or hole(s) in the 1f7/2 orbit:

Jπ = 0+, 1+, · · · , 7+ states for even-A nuclei, Jπ =
1/2−, 3/2−, · · · , 13/2− states for odd-A nuclei. In Ta-
ble V, we show low-lying energy spectra of 42−48

21 Sc21−27

calculated by the ArbModel using the evaluated two-body
matrix elements. We also show measured spectra re-
ported in Ref. [13].
In the table, we put parentheses when the spin-parity

of those states have not been identified yet. Because we
could not find any candidates for Jπ = 13/2− state of
45
21Sc24 and 47

21Sc26 in the experimental spectra, we put
hyphens, “−”, into the corresponding place in the table.
We note that spectra of 42

21Sc21 and 48
21Sc27 completely

coincide with the measurements by definition. We also
note that, in the case of odd-even and odd-odd nuclei,
there are a number states at low excitation energy. Cor-
respondingly, we arbitrary select the most probable state
for each Jπ near the predicted value of the shell-model
calculation. We indeed put asterisks, “∗”, in the table,
when there exist other states with the same Jπ at lower
excitation energy.
From the table, we find a fairly good agreement be-

tween the shell-model predictions and the measured spec-
tra. Although there exists the ambiguity of the arbitrary
selection of corresponding states from a number of states
emerging at low excitation energy in odd-A nuclei, this
good agreement may present usefulness of our method.
We would be able to get many matrix elements by the
interpolation technique for nuclei in a wide mass region
which can be used to analyze abundant nuclei generated
though the MNT reaction.

IV. SUMMARY AND PERSPECTIVE

In this report, we showed our motivation and the aim
of this project and presented tentative results obtained so
far to make it clear where we are on the way to accomplish
the project.
The idea of this project is to obtain a deeper in-

sight into microscopic mechanisms of multinucleon trans-
fer (MNT) reactions by conducting several kinds of cal-
culations for the structure of atomic nuclei. We con-
sider three different approaches, the shell-model, the the-
ory of coefficients of fractional parentage (c.f.p.), and
the time-dependent Hartree-Fock (TDHF) theory com-
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TABLE V. Low-lying excitation energies of scandium isotopes. Spectra obtained from the shell-model calculations using the
ArbModel with two-body matrix elements evaluated by the interpolation technique are shown in comparison with experimental
data. Experimental data have been taken from Ref. [13]. Energies with parenthesis mean that its spin-parity, Jπ, has not been
identified yet. States which have not been measured are represented by hyphens, “−”. Energies with an asterisk “ * ” indicate
the fact that an arbitrary selection from several candidate states for the spin-parity was done (see text).

42
21Sc21

43
21Sc22

44
21Sc23

45
21Sc24

46
21Sc25

47
21Sc26

48
21Sc27

Jπ Thr. Exp. Thr. Exp. Thr. Exp. Thr. Exp. Thr. Exp. Thr. Exp. Thr. Exp.

7+ 0.616 (0.616) 1.039 0.968 0.963 0.978 1.096 1.096

13/2− 3.390 (4.157) 2.454 − 2.241 −
6+ 3.242 (3.242) 0.190 0.271 0.000 0.052 0.000 0.000

11/2− 2.282 1.829 1.353 1.237 1.119 1.147

5+ 1.510 (1.510) 1.151 1.531 0.276 0.281 0.131 0.131

9/2− 1.630 (1.882) 1.502 1.662 1.668 1.878

4+ 2.815 2.815 0.610 0.350 0.153 0.000 0.252 0.252

7/2− 0.000 0.000 0.000 0.000 0.000 0.000

3+ 1.490 1.490 0.675 0.762 0.208 0.228 0.623 0.623

5/2− 3.344 3.463∗ 1.695 (2.093)∗ 1.452 1.297

2+ 1.586 1.586 0.000 0.000 0.369 0.444 1.143 1.143

3/2− 2.927 (2.984)∗ 1.639 (1.556)∗ 1.200 0.807

1+ 0.611 0.611 0.345 0.667 1.421 0.991 2.517 2.517

1/2− 4.256 (4.665)∗ 2.062 (2.151) 2.617 (2.810)

0+ 0.000 0.000 2.993 2.779 4.953 (5.022)∗ 6.678 6.678

bined with the quantum-number projection technique
(TDHF+QNP), which are based on different theoreti-
cal frameworks. While the shell-model and the theory of
c.f.p. describe static excitation spectra, the TDHF+QNP
method would describe structure of nuclei including ef-
fects of reaction dynamics. By comparing results ob-
tained from those three different approaches, we consider
that we may get a deeper understanding of microscopic
reaction mechanisms.

Up to now, we have investigated how to evaluate two-
body matrix elements for nuclei in a wide mass region
which are necessary for the shell-model calculation. In
this report, we have proposed a simple interpolation tech-
nique to evaluate the matrix elements for a bunch of nu-
clei from some available experimental data. As a first
step, we consider nuclei having valence nucleons in the
1f7/2 orbit on top of the N = 20 and Z = 20 cores. We
evaluated particle-particle (hole-hole) and particle-hole
matrix elements for all nuclei in the 20 ≤ N (Z) ≤ 28
region except for nuclei with 0p0h, 1p0h, and 0p1h con-
figurations.

Using the evaluated matrix elements, we performed
shell-model calculations by using the ArbModel. To check
how our method works in practice, we compared calcu-
lated low-lying energy spectra of scandium isotopes with
experimental spectra. From the comparison, we have
found a fairly good agreement with the experimental
data. We thus consider that our interpolation technique
would be useful to calculate energy spectra of a number
of nuclei which would be produced through the MNT re-

action.
There are two remaining steps to accomplish this

project. One is investigations of energy spectra using the
theory of c.f.p. which gives us energy spectra generated
by couplings of valence nucleons in a single-j orbit. The
other is investigations of energy spectra for reaction prod-
ucts after MNT reactions. Recently, we have developed
a theoretical framework to calculate expectation values
of operators in a particle-number projected TDHF wave
function after collision [9]. By extending the method
to include parity and total angular momentum projec-
tions, it would be possible to calculate energy spectra
specified by the spin-parity, Jπ, directly from the TDHF
wave function after collision. The implementation of the
method into our numerical code is now in progress. By
combining these three approaches, we may get a deeper
insight into the reaction mechanisms which would enable
us to answer interesting questions: “From which orbitals
to which ones, nucleons are transferred?”, “What kinds
of states are populated after the MNT reaction?”, “Can
those populated states be described by the shell-model
and/or c.f.p. predictions?”, and so on.
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Germany, 2008.

[21] When we construct input files of the ArbModel, we actu-
ally multiply −

√
2λ+ 1/2 for matrix elements between

two like-particles (neutron-neutron or proton-proton)
and

√
2λ+ 1 for matrix elements between two different

kinds of particles (neutron-proton), since the ArbModel

does not use isospin basis but uses neutron-proton basis.

https://groups.nscl.msu.edu/jina/talent/wiki/Main_Page
https://groups.nscl.msu.edu/jina/talent/wiki/Main_Page
http://talent.ganil.fr/
http://talent.ganil.fr/
http://www.nndc.bnl.gov/chart/
http://www.nndc.bnl.gov/chart/

