Time-Dependent Hartree-Fock Theory for Multinucleon Transfer Reactions

Kazuyuki Sekizawa

Center for Interdisciplinary Research
Institute for Research Promotion, Niigata University, Japan
Nobel role of pairing: soliton-like excitation

\[\Delta \varphi = \pi \]

- TDSLDA equation:

\[
\begin{pmatrix}
 u_{k\uparrow} \\
 u_{k\downarrow} \\
 v_{k\uparrow} \\
 v_{k\downarrow}
\end{pmatrix}

\begin{pmatrix}
 h_{\uparrow\uparrow} & h_{\uparrow\downarrow} & 0 & \Delta \\
 h_{\downarrow\uparrow} & h_{\downarrow\downarrow} & -\Delta & 0 \\
 0 & -\Delta^* & -h_{\uparrow\uparrow} & -h_{\uparrow\downarrow} \\
 \Delta^* & 0 & -h_{\downarrow\uparrow} & -h_{\downarrow\downarrow}
\end{pmatrix}

\begin{pmatrix}
 u_{k\uparrow} \\
 u_{k\downarrow} \\
 v_{k\uparrow} \\
 v_{k\downarrow}
\end{pmatrix}
\]

Pairing may hinder energy dissipation and fusion

Poster session C 17:20-18:30

Thursday, Aug. 1

Pairing effects in

\(^{96}\text{Zr} + ^{96}\text{Zr}\) and \(^{48}\text{Ca}, ^{50}\text{Ti} + ^{252}\text{Cf}\)

will be presented by M.C. Barton

Warsaw
University of Technology

G. Wlazłowski P. Magierski

University of Washington

A. Bulgac S. Jin I. Abdurrahman

Collisions of heavy nuclei, as well as fission

Nuclear Reactions A 14:10-14:25

“Fission dynamics from saddle to scission and beyond” by A. Bulgac
How can we create yet-unknown neutron-rich nuclei?

- New magic numbers?
- Impact on r-process?
- Heaviest element?
- Island of stability?

- Theory: \(~7,000\)
- Expt.: \(~3,200\)

Remarks on TDHF (or TDDFT, TDEDF)

- There is no adjustable parameter on reaction dynamics

\[
S = \int_{t_0}^{t_1} dt \left(i\hbar \sum_i \langle \phi_i(t) | \frac{\partial}{\partial t} | \phi_i(t) \rangle - \left[E[\rho(t)] \right] \right)
\]

\[
i\hbar \frac{\partial \phi_i(\mathbf{r}\sigma q, t)}{\partial t} = \hat{h}[\rho(t)] \phi_i(\mathbf{r}\sigma q, t) \quad : \text{TDHF eq.}
\]

Effective interaction

\[
E[\rho] = \langle \Phi | \hat{H} | \Phi \rangle
\]

Energy Density Functional (EDF)
How to compute production cross sections?

We have developed: **TDHF + PNP + GEMINI**

TDHF
- Reaction dynamics
 - $(10^{-21}-10^{-20} \text{ sec})$

GEMINI++
- De-excitation
 - $(10^{-18}-10^{-16} \text{ sec})$
 - Evaporation, fission and γ-rays
 - $n, p, \gamma, ...$
 - Or fission

How to compute production cross sections?

We have developed: TDHF + PNP + GEMINI

Other groups also adopted GEMINI for TDHF:
- Z. Wu and Lu Guo, PRC 100(2019)014612
Typical example: $^{64}\text{Ni} + ^{238}\text{U} (E_{c.m.} = 307 \text{ MeV})$

Production cross section for lighter fragments

Message 1

- **✓** TDHF can reproduce overall trends without empirical parameters other than the EDF
- **➢** However, it underestimates cross sections for channels far from the average values (well known problem of the mass width)

We should improve the description of fluctuations and correlations.

Typical example: $^{64}\text{Ni} + ^{238}\text{U} \ (E_{c.m.} = 307 \text{ MeV})$

Expt.: L. Corradi et al., PRC 59 (1999) 261

We put one step forward along this direction:

EXPLORING ZEPTOSECOND QUANTUM EQUILIBRATION DYNAMICS: FROM DEEP-INELASTIC TO FUSION-FISSION OUTCOMES IN $^{58}\text{Ni} + ^{60}\text{Ni}$ REACTIONS

E. Williams,^1,* K. Sekizawa,^2 D. J. Hinde,^1 C. Simenel,^1 M. Dasgupta,^1 I. P. Carter,^1 K. J. Cook,^1 D. Y. Jeung,^1 S. D. McNeil,^1 C. S. Palshetkar,^1,† D. C. Rafferty,^1 K. Ramachandran,^1,‡ and A. Wakhle^1

^1Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 2601, Australia

^2Faculty of Physics, Warsaw University of Technology, ulica Koszykowa 75, 00-662 Warsaw, Poland

(Received 16 August 2017; revised manuscript received 27 October 2017; published 10 January 2018)
Method: Variational principle of Balian and Vénéroni

Variational space can be controlled by both “state” and “observable”

- The action-like quantity proposed by Balian and Vénéroni

\[J = \text{Tr} \left[\hat{A}(t_1) \hat{D}(t_1) \right] - \int_{t_0}^{t_1} \text{Tr} \left[\hat{A}(t) \left(\frac{d\hat{D}(t)}{dt} + i[\hat{H}(t), \hat{D}(t)] \right) \right] dt \]

\(\hat{D}(t) \): describes the state of the system
\(\hat{A}(t) \): describes the evolution of the observable in the Heisenberg picture

- **Unrestricted variation** (w.r.t. either \(A \) or \(D \))

- **Slater determinant** & **one-body observable**

- **Slater determinant** & **fluctuations of one-body observable**
Numerical implementation of TDRPA for the mass width

Forward TDHF

t_0 → t_1

$\sigma_A^2 = \langle \hat{N}^2 \rangle - \langle \hat{N} \rangle^2$

TDHF: $\sigma_A \sim 1.5$
Experiment: $\sigma_A \sim 7.1$

Initial state: t_0

After collision: t_1

Numerical implementation of TDRPA for the mass width

The Balian-Vénéroni prescription (TDRPA):

\[
\sigma^2_{X}(t_1) = \lim_{\varepsilon \to 0} \frac{\text{Tr}\{[\rho(t_0) - \rho_X(t_0, \varepsilon)]^2\}}{2\varepsilon^2}
\]

\[
\rho_X(t_1, \varepsilon) = e^{i\varepsilon \hat{X}} \rho(t_1) e^{-i\varepsilon \hat{X}}
\]

Backward TDHF

\[
\sigma^2_A = \langle \hat{N}^2 \rangle - \langle \hat{N} \rangle^2
\]

TDHF: \(\sigma_A \sim 1.5\)

Experiment: \(\sigma_A \sim 7.1\)

TDRPA: \(\sigma_A \sim 7.5\)

TDRPA quantitatively reproduced the experimental mass width

Width of the mass ratio distribution, σ_{MR}: Expt. vs Theory

$58_{\text{Ni}}^60_{\text{Ni}} + 60_{\text{Ni}}^60_{\text{Ni}}$ at $E/V_B = 1.4$

TDRPA quantitatively reproduced the experimental mass width

 ✓ The results indicate that the one-body dissipation and fluctuations are sufficient

 ➢ However, the TDRPA formula can not be applied for asymmetric reactions

One needs to extend the derivation of the TDRPA formula or use alternative approaches, e.g., stochastic extensions
Then, what would be the next step?

Stochastic extensions
Stochastic Mean-Field (SMF) approach

✓ In the small fluctuation limit, SMF approach formally reproduces the TDRPA formula

Multinucleon transfer processes are described as diffusion processes through the neck:

\[
\begin{align*}
\frac{\partial \sigma^2_{NN}}{\partial t} &= 2 \frac{\partial \nu_n}{\partial N_1} \sigma^2_{NN} + 2 \frac{\partial \nu_n}{\partial Z_1} \sigma^2_{NZ} + 2D_{NN} \\
\frac{\partial \sigma^2_{ZZ}}{\partial t} &= 2 \frac{\partial \nu_p}{\partial Z_1} \sigma^2_{ZZ} + 2 \frac{\partial \nu_p}{\partial N_1} \sigma^2_{NZ} + 2D_{ZZ} \\
\frac{\partial \sigma^2_{NZ}}{\partial t} &= 2 \frac{\partial \nu_p}{\partial N_1} \sigma^2_{NN} + 2 \frac{\partial \nu_n}{\partial Z_1} \sigma^2_{ZZ} + \left(\frac{\partial \nu_n}{\partial N_1} + \frac{\partial \nu_p}{\partial Z_1} \right) \sigma^2_{NZ}
\end{align*}
\]

\[
\sigma^2_{XY} = \langle \hat{X} \hat{Y} \rangle - \langle \hat{X} \rangle \langle \hat{Y} \rangle
\]

✓ Drift and diffusion coefficients can be obtained with occupied single-particle orbitals in TDHF

For details of the latest formulation, see, e.g.:

S. Ayik, B. Yilmaz, O. Yilmaz, and A.S. Umar
Stochastic Mean-Field (SMF) approach

SMF has been successfully applied also for asymmetric systems

Data: E.M. Kozulin et al., PRC 85(2012)044611

SMF: B. Yilmaz et al., PRC 98(2018)034604

TDRPA: E. Williams et al., PRL 120(2018)022501
Mean-field evolution is augmented with fluctuations and dissipation:

\[i\hbar \psi_k(r, t) = \hbar[n] \psi_k(r, t) + \gamma[n] \dot{\psi}_k(r, t) \psi_k(r, t) \]
\[- \frac{1}{2} \left[\mathbf{u}(r, t) \cdot \mathbf{p} + \mathbf{p} \cdot \mathbf{u}(r, t) \right] \psi_k(r, t) \]
\[+ u_0(r, t) \psi_k(r, t), \]

TKE & mass distributions in 258Fm → comparable to experimental data

Summary

TDHF
- **✓** TDHF can describe overall trends of MNT processes
- It underestimates cross sections far from the average values
- Needs better description of fluctuations and correlations

TDRPA
- **✓** TDRPA quantitatively reproduced the experimental mass width
- It can not be applied for asymmetric systems
- Needs to approaches applicable to asymmetric systems

Next step
- **✓** Stochastic extensions may be helpful to construct a predictable microscopic theory for the multinucleon transfer reactions
Kazuyuki Sekizawa
Specially Appointed Assistant Professor
Center for Transdisciplinary Research
Institute for Research Promotion, Niigata University
8050, Ikarashi Ninoho, Nishi-ku, Niigata City, Niigata 950-2181, Japan
sekizawa @ phys.sc.niigata-u.ac.jp
http://sekizawa.fizyka.pw.edu.pl/english/